Associated disorders

The TOR1A gene is associated with autosomal dominant dystonia 1 (DYT1) (MedGen UID: 338823).

Order single gene


Order this gene as a single gene test.

Order a test

Invitae tests that include this gene:

TOR1A is the only known cause of autosomal dominant, early-onset generalized dystonia. In Ashkenazi Jews, TOR1A testing is positive in close to 100% in patients with limb onset dystonia before age 26. The common TOR1A mutation (p.Glu303del) accounts for approximately 60% of cases of generalized dystonia outside of the Ashkenazi Jewish population and approximately 90% of cases within the Ashkenazi Jewish population.

The TOR1A gene (also known as DYT1) provides instructions for making a protein called torsinA. This protein is found in the space between two neighboring structures within cells, the nuclear envelope and the endoplasmic reticulum. The nuclear envelope surrounds the nucleus and separates it from the rest of the cell. The endoplasmic reticulum processes proteins and other molecules and helps transport them to specific destinations either inside or outside the cell. Although little is known about the function of torsinA, studies suggest that it may help process and transport other proteins. TorsinA may also participate in the movement of membranes associated with the nuclear envelope and endoplasmic reticulum. TorsinA is active in many of the body’s tissues, and it is particularly important for the normal function of nerve cells in the brain. For example, researchers have found high levels of torsinA in a part of the brain called the substantia nigra. This region contains nerve cells that produce dopamine, a chemical messenger that transmits signals within the brain to produce smooth physical movements.

Assay and technical information

Invitae is a College of American Pathologists (CAP)-accredited and Clinical Laboratory Improvement Amendments (CLIA)-certified clinical diagnostic laboratory performing full-gene sequencing and deletion/duplication analysis using next-generation sequencing technology (NGS).

Our sequence analysis covers clinically important regions of each gene, including coding exons, +/- 10 base pairs of adjacent intronic sequence, and select noncoding variants. Our assay provides a Q30 quality-adjusted mean coverage depth of 350x (50x minimum, or supplemented with additional analysis). Variants classified as pathogenic or likely pathogenic are confirmed with orthogonal methods, except individual variants that have high quality scores and previously validated in at least ten unrelated samples.

Our analysis detects most intragenic deletions and duplications at single exon resolution. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. If you are requesting the detection of a specific single-exon copy number variation, please contact Client Services before placing your order.

Gene Transcript reference Sequencing analysis Deletion/Duplication analysis
TOR1A NM_000113.2