Card kit

Invitae Low C0 Test

Test code: 06103

Test description

The Invitae Low C0 Test analyzes the SLC22A5 gene, which is associated with low C0 (free carnitine) on newborn screening (NBS), plasma acylcarnitine analysis, and total and free carnitine in plasma. Genetic testing of this gene may confirm a diagnosis and help guide treatment and management decisions.

Disorders tested

Ordering information

Turnaround time:

10–21 calendar days (14 days on average)

New York approved:

Yes

Preferred specimen:

3mL whole blood in a purple-top EDTA tube (K2EDTA or K3EDTA)

Alternate specimens:

Saliva, buccal swab, and gDNA are also accepted.
Learn more about specimen requirementsRequest a specimen collection kit

Clinical description and sensitivity

Clinical description:

Low C0 (free carnitine) may be detected during newborn screening, acylcarnitine analysis, and total and free carnitine in plasma due to primary carnitine deficiency or secondary carnitine deficiency. Secondary carnitine deficiency can be caused both by genetic causes (other fatty acid oxidation disorders, organic acidemias) and by non-genetic causes (e.g., malnutrition, prematurity). Patients with primary carnitine deficiency may be differentiated from genetic causes of secondary carnitine deficiency through characteristic elevations of acylcarnitine species and possibly organic acids for these disorders. In patients with secondary carnitine deficiency due to non-genetic causes, characteristic elevation of free carnitine in urine will not be present. Healthy babies with abnormal newborn screening for low C0 may also be picked up due to maternal primary carnitine deficiency.

Patients with primary carnitine deficiency show a range in severity and may present in the infantile period (three months to two years), early childhood (two to four years), or as an adult, or they may be asymptomatic. Patients with the infantile-onset form have the typical metabolic features of a fatty acid oxidation disorder: poor feeding, irritability, lethargy, hepatomegaly, hypoketotic hypoglycemia, hyperammonemia, and elevated liver transaminases. Prolonged fasting or intercurrent illness may precipitate bouts of metabolic decompensation in these patients.

Patients with the childhood-onset form have a myopathic presentation that may include hypotonia, dilated cardiomyopathy, skeletal muscle myopathy, and elevated creatine kinase. Patients with this myopathic form are at risk of sudden cardiac death. Adult females have been detected through abnormal newborn screening findings in their babies. Roughly half of these adult patients have clinical symptoms and half are asymptomatic, despite having low carnitine. The most common symptom is fatigue, though cardiomyopathy and arrhythmias have been reported.

Carnitine supplementation is used to treat patients with primary carnitine deficiency. Emergency protocols are also implemented during times of metabolic crises, most commonly caused by illness, infection, or prolonged periods of fasting; if left untreated, it can lead to coma and death. On continued carnitine supplementation, patients have a good prognosis, so early diagnosis and detection may improve the long-term outcome of these patients.

Clinical description and sensitivity

Assay information

Invitae is a College of American Pathologists (CAP)-accredited and Clinical Laboratory Improvement Amendments (CLIA)-certified clinical diagnostic laboratory performing full-gene sequencing and deletion/duplication analysis using next-generation sequencing technology (NGS).

Our sequence analysis covers clinically important regions of each gene, including coding exons and 10 to 20 base pairs of adjacent intronic sequence on either side of the coding exons in the transcript listed below, depending on the specific gene or test. In addition, the analysis covers select non-coding variants. Any variants that fall outside these regions are not analyzed. Any limitations in the analysis of these genes will be listed on the report. Contact client services with any questions.

Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae’s deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. In very rare cases, (circulating hematolymphoid neoplasm, bone marrow transplant, recent blood transfusion) the analyzed DNA may not represent the patient's constitutional genome.

Assay information

Order test

You can customize this test by clicking genes to remove them.

Primary panel

1 gene selected
SLC22A5

Question about billing? 

Find answers