Ordering
  • Test code: 01271
  • Turnaround time:
    10–21 calendar days (14 days on average)
  • Preferred specimen:
    3mL whole blood in a purple-top tube
  • Alternate specimens:
    DNA or saliva/assisted saliva
  • Sample requirements
  • Request a sample kit
Billing
 

Invitae Gastric Cancer Panel

Test description

The Invitae Gastric Cancer Panel analyzes genes associated with an increased lifetime risk of developing stomach cancer. These genes were selected based on the available evidence to date to provide Invitae’s broadest hereditary gastric cancer test. Many of these genes are also associated with an increased risk of other cancer types.

Genetic testing of these genes may confirm a diagnosis and help guide treatment and management decisions. Identification of a disease-causing variant would also guide testing and diagnosis of at-risk relatives. This test is specifically designed for heritable germline mutations and is not appropriate for the detection of somatic mutations in tumor tissue.

Order test

Primary panel (19 genes)

APC BMPR1A CDH1 CTNNA1 EPCAM KIT MLH1 MSH2 MSH6 NF1 PDGFRA PMS2 SDHA SDHB SDHC SDHD SMAD4 STK11 TP53

Alternative tests to consider

These genes can also be ordered as part of broader, cross-cancer, multi-gene panels. Depending on the individual’s clinical and family history, these broader panels may be appropriate and can be ordered at no additional charge.

  • constitutional mismatch repair deficiency (CMMR-D)
  • familial adenomatous polyposis (FAP)
  • familial gastrointestinal stromal tumor (GIST)
  • hereditary diffuse gastric cancer syndrome (HDGC)
  • hereditary paraganglioma-pheochromocytoma syndrome (PGL/PCC)
  • juvenile polyposis syndrome (JPS)
  • Li-Fraumeni syndrome (LFS)
  • Lynch syndrome – also known as hereditary non-polyposis colorectal cancer (HNPCC)
  • neurofibromatosis type 1 (NF1)
  • Peutz-Jeghers syndrome (JPS)

Gastric cancer occurs in approximately 1 in 93 individuals in the general population. Gastric adenocarcinomas account for 90%-95% of gastric cancers and are further histologically divided into intestinal type and diffuse type. One of the most common causes of hereditary gastric cancer is a pathogenic variant in CDH1, which causes hereditary diffuse gastric cancer syndrome, but there are a number of other genes associated with an increased risk for gastric tumors. Gastrointestinal stromal tumors (GISTs) are characterized as sarcomas and are rare tumors of the GI tract that account for 1%-3% of all gastric cancers. It is important to note that GISTs are not the same as gastric adenocarcinomas; they differ in their pathology, prognosis, and medical management.

Most cases of gastric cancer are sporadic; however, approximately 3%-5% have a familial component and are due to an identifiable pathogenic variant. The Invitae Gastric Cancer panel tests for:

  • hereditary conditions associated with intestinal-type gastric adenocarcinomas such as Lynch and Peutz-Jeghers syndromes
  • hereditary diffuse gastric cancer syndrome due to pathogenic variants in CDH1, a gene that is associated with diffuse-type adenocarcinomas
  • familial GIST, which is associated with a subset of genes

In individuals with a pathogenic variant in one of these genes, the risk of developing cancer is significantly higher, and many of these cancers may be difficult to detect and/or treat. Identifying those at higher risk may enable additional screening, surveillance, and interventions, which could result in risk-reduction and early diagnosis, thereby increasing the chances of successful treatment and survival.

Individuals with a pathogenic variant in one of these genes have an increased risk of malignancy compared to the average person, but not everyone with such a variant will actually develop cancer. Further, the same variant may manifest with different symptoms, even among family members. Because we cannot predict which cancers may develop, additional medical management strategies focused on cancer prevention and early detection may be beneficial.

For gene-associated cancer risks, download our Cancer risk poster.

Most of the genes on this panel have autosomal dominant inheritance for hereditary gastric cancer. Some have autosomal recessive inheritance, or result in clinically distinct autosomal recessive conditions, as outlined below:

  • MUTYH is associated with MUTYH-associated polyposis (MAP)
  • MLH1, MSH2, MSH6, and PMS2 are associated with constitutional mismatch repair deficiency (CMMR-D)

This panel may be considered for individuals whose personal and/or family history is suggestive of a hereditary gastric cancer syndrome, including:

  • gastric cancer, particularly if early-onset
  • gastric cancer in multiple relatives on the same side of the family
  • gastric and breast cancer (particularly lobular type) in the same individual or family
  • gastric and other GI tumors in one individual or family
  • gastric polyposis
    There are also some common general features suggestive of a family with hereditary cancer syndrome. These include:
  • cancer diagnosed at an unusually young age
  • different types of cancer that have occurred independently in the same person
  • cancer that has developed in both organs of a set of paired organs (e.g., both kidneys, both breasts)
  • several close blood relatives that have the same type of cancer
  • unusual cases of a specific cancer type (e.g., breast cancer in a man)

  1. American Society of Clinical Oncology, Cancer.Net. http://www.cancer.net/cancer-types/hereditary-diffuse-gastric-cancer Accessed September 2019.
  2. Easton, DF, et al. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am. J. Hum. Genet. 1993; 53(2):305-13. PMID: 8328449
  3. National Comprehensive Cancer Network®, Clinical practice guidelines in oncology. Gastric Cancer. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp Accessed January 2018.
  4. National Comprehensive Cancer Network®, Clinical practice guidelines in oncology. Genetic/Familial High Risk Assessment: Breast and Ovarian Version 3.2019. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp Accessed September 2019
  5. American Cancer Society, Lifetime Risks of Developing Various Cancers. http://www.cancer.org/cancer/cancerbasics/lifetime-probability-of-developing-or-dying-from-cancer Accessed August 2019..
  6. National Comprehensive Cancer Network®, Clinical practice guidelines in oncology. Genetic/Familial High Risk Assessment: Colorectal. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp Accessed September 2019.
  7. Neumann, HP, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 2004; 292(8):943-51. PMID: 15328326
  8. Peczkowska, M, et al. Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab. 2008; 4(2):111-5. PMID: 18212813
  9. Schiavi, F, et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA. 2005; 294(16):2057-63. PMID: 16249420
  10. Williamson, SR, et al. Succinate dehydrogenase-deficient renal cell carcinoma: detailed characterization of 11 tumors defining a unique subtype of renal cell carcinoma. Mod. Pathol. 2015; 28(1):80-94. PMID: 25034258
  11. Jiang, Q, et al. A novel germline mutation in SDHA identified in a rare case of gastrointestinal stromal tumor complicated with renal cell carcinoma. Int J Clin Exp Pathol. 2015; 8(10):12188-97. PMID: 26722403
  12. Buffet, A, et al. A decade (2001-2010) of genetic testing for pheochromocytoma and paraganglioma. Horm. Metab. Res. 2012; 44(5):359-66. PMID: 22517557
  13. Korpershoek, E, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J. Clin. Endocrinol. Metab. 2011; 96(9):E1472-6. PMID: 21752896
  14. Masciari, S, et al. Gastric cancer in individuals with Li-Fraumeni syndrome. Genet. Med. 2011; 13(7):651-7. doi: 10.1097/GIM.0b013e31821628b6. PMID: 21552135
  15. Italiano, A, et al. SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors. BMC Cancer. 2012; 12:408. doi: 10.1186/1471-2407-12-408. PMID: 22974104
  16. Carballo, M, et al. Novel c-KIT germline mutation in a family with gastrointestinal stromal tumors and cutaneous hyperpigmentation. Am. J. Med. Genet. A. 2005; 132A(4):361-4. doi: 10.1002/ajmg.a.30388. PMID: 15742474
  17. Hirota, S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998; 279(5350):577-80. PMID: 9438854
  18. Goodenberger, ML, et al. PMS2 monoallelic mutation carriers: the known unknown. Genet. Med. 2015; :None. doi: 10.1038/gim.2015.27. PMID: 25856668
  19. Watson, GA, et al. Get the GIST? An overview of gastrointestinal stromal tumours. Ir J Med Sci. 2016; :None. PMID: 26833487
  20. Jasperson, KW, Burt, RW. APC-Associated Polyposis Conditions. 1998 Dec 18. In: Pagon, RA, et al, editors. GeneReviews (Internet). University of Washington, Seattle; Available from: PMID: 20301519
  21. Pollock, J, Welsh, JS. Clinical cancer genetics: Part I: Gastrointestinal. Am. J. Clin. Oncol. 2011; 34(3):332-6. doi: 10.1097/COC.0b013e3181dea432. PMID: 20859198
  22. Hendriks, YM, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004; 127(1):17-25. PMID: 15236168
  23. Giardiello, FM, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am. J. Gastroenterol. 2014; 109(8):1159-79. doi: 10.1038/ajg.2014.186. PMID: 25070057
  24. Gonzalez, KD, et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J. Med. Genet. 2009; 46(10):689-93. PMID: 19556618
  25. Hearle, N, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin. Cancer Res. 2006; 12(10):3209-15. PMID: 16707622
  26. Evans, DG, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am. J. Med. Genet. A. 2010; 152A(2):327-32. doi: 10.1002/ajmg.a.33139. PMID: 20082463
  27. Benn, DE, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J. Clin. Endocrinol. Metab. 2006; 91(3):827-36. PMID: 16317055
  28. Baglietto, L, et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J. Natl. Cancer Inst. 2010; 102(3):193-201. doi: 10.1093/jnci/djp473. PMID: 20028993
  29. Groen, EJ, et al. Extra-intestinal manifestations of familial adenomatous polyposis. Ann. Surg. Oncol. 2008; 15(9):2439-50. doi: 10.1245/s10434-008-9981-3. PMID: 18612695
  30. Worthley, DL, et al. Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome. Gut. 2012; 61(5):774-9. PMID: 21813476
  31. Repak, R, et al. The first European family with gastric adenocarcinoma and proximal polyposis of the stomach: case report and review of the literature. Gastrointest. Endosc. 2016; 84(4):718-25. PMID: 27343414
  32. Boursi, B, et al. The APC p.I1307K polymorphism is a significant risk factor for CRC in average risk Ashkenazi Jews. Eur. J. Cancer. 2013; 49(17):3680-5. PMID: 23896379
  33. Robson, ME, et al. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J. Clin. Oncol. 2010; 28(5):893-901. PMID: 20065170
  34. Half, E, et al. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009; 4:22. doi: 10.1186/1750-1172-4-22. PMID: 19822006
  35. Liang, J, et al. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am. J. Epidemiol. 2013; 177(11):1169-79. PMID: 23576677
  36. Laken, SJ, et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat. Genet. 1997; 17(1):79-83. PMID: 9288102
  37. Olivier, M, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003; 63(20):6643-50. PMID: 14583457
  38. Friedl, W, et al. Attenuated familial adenomatous polyposis due to a mutation in the 3' part of the APC gene. A clue for understanding the function of the APC protein. Hum. Genet. 1996; 97(5):579-84. PMID: 8655134
  39. van, der, Luijt, RB, et al. APC mutation in the alternatively spliced region of exon 9 associated with late onset familial adenomatous polyposis. Hum. Genet. 1995; 96(6):705-10. PMID: 8522331
  40. Giardiello, FM, et al. Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut. 1993; 34(10):1394-6. doi: 10.1136/gut.34.10.1394. PMID: 8244108
  41. Sieber, OM, et al. Disease severity and genetic pathways in attenuated familial adenomatous polyposis vary greatly but depend on the site of the germline mutation. Gut. 2006; 55(10):1440-8. PMID: 16461775
  42. Burt, RW, et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004; 127(2):444-51. PMID: 15300576
  43. Bisgaard, ML, et al. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum. Mutat. 1994; 3(2):121-5. PMID: 8199592
  44. Li, J, et al. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant. Am. J. Hum. Genet. 2016; 98(5):830-42. PMID: 27087319
  45. Fitzgerald, RC, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J. Med. Genet. 2010; 47(7):436-44. doi: 10.1136/jmg.2009.074237. PMID: 20591882
  46. Chompret, A, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br. J. Cancer. 2000; 82(12):1932-7. doi: 10.1054/bjoc.2000.1167. PMID: 10864200
  47. Ricci, R, et al. PDGFRA-mutant syndrome. Mod. Pathol. 2015; 28(7):954-64. doi: 10.1038/modpathol.2015.56. PMID: 25975287
  48. Vasen, HF, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013; 62(6):812-23. PMID: 23408351
  49. Aarnio, M, et al. Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int. J. Cancer. 1995; 64(6):430-3. PMID: 8550246
  50. Ryan, S, et al. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2014; 23(3):437-49. PMID: 24425144
  51. Barrow, E, et al. Cumulative lifetime incidence of extracolonic cancers in Lynch syndrome: a report of 121 families with proven mutations. Clin. Genet. 2009; 75(2):141-9. doi: 10.1111/j.1399-0004.2008.01125.x. PMID: 19215248
  52. Agaimy, A, et al. Gastrointestinal manifestations of neurofibromatosis type 1 (Recklinghausen's disease): clinicopathological spectrum with pathogenetic considerations. Int J Clin Exp Pathol. 2012; 5(9):852-62. PMID: 23119102
  53. de, Raedt, T, et al. Intestinal neurofibromatosis is a subtype of familial GIST and results from a dominant activating mutation in PDGFRA. Gastroenterology. 2006; 131(6):1907-12. doi: 10.1053/j.gastro.2006.07.002. PMID: 17087943
  54. Kaurah, P, Huntsman, DG. Hereditary Diffuse Gastric Cancer. 2002 Nov 04. In: Pagon, RA, et al, editors. GeneReviews (Internet). University of Washington, Seattle; Available from: http://www.ncbi.nlm.nih.gov/books/NBK1139/ PMID: 20301318
  55. Skeldon, SC, et al. Patients with Lynch syndrome mismatch repair gene mutations are at higher risk for not only upper tract urothelial cancer but also bladder cancer. Eur. Urol. 2013; 63(2):379-85. PMID: 22883484
  56. Aarnio, M, et al. Uroepithelial and kidney carcinoma in Lynch syndrome. Fam. Cancer. 2012; 11(3):395-401. PMID: 22476430
  57. Engel, C, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J. Clin. Oncol. 2012; 30(35):4409-15. doi: 10.1200/JCO.2012.43.2278. PMID: 23091106
  58. Syngal, S, et al. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 2015; 110(2):223-62; quiz 263. doi: 10.1038/ajg.2014.435. PMID: 25645574
  59. Chompret, A, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology. 2004; 126(1):318-21. doi: 10.1053/j.gastro.2003.10.079. PMID: 14699510
  60. Neklason, DW, et al. American founder mutation for attenuated familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2008; 6(1):46-52. PMID: 18063416
  61. Dwight, T, et al. Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors. Am. J. Surg. Pathol. 2013; 37(2):226-33. doi: 10.1097/PAS.0b013e3182671155. PMID: 23060355
  62. Bachet, JB, et al. Diagnosis, prognosis and treatment of patients with gastrointestinal stromal tumour (GIST) and germline mutation of KIT exon 13. Eur. J. Cancer. 2013; 49(11):2531-41. doi: 10.1016/j.ejca.2013.04.005. PMID: 23648119
  63. Dowty, JG, et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum. Mutat. 2013; 34(3):490-7. doi: 10.1002/humu.22262. PMID: 23255516
  64. Brosens, LA, et al. Risk of colorectal cancer in juvenile polyposis. Gut. 2007; 56(7):965-7. doi: 10.1136/gut.2006.116913. PMID: 17303595
  65. Bougeard, G, et al. Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J. Clin. Oncol. 2015; 33(21):2345-52. doi: 10.1200/JCO.2014.59.5728. PMID: 26014290
  66. Bianchi, LK, et al. Fundic gland polyp dysplasia is common in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2008; 6(2):180-5. doi: 10.1016/j.cgh.2007.11.018. PMID: 18237868
  67. Pantaleo, MA, et al. SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J. Natl. Cancer Inst. 2011; 103(12):983-7. PMID: 21505157
  68. Postow, MA, Robson, ME. Inherited gastrointestinal stromal tumor syndromes: mutations, clinical features, and therapeutic implications. Clin Sarcoma Res. 2012; 2(1):16. doi: 10.1186/2045-3329-2-16. PMID: 23036227
  69. Leoz, ML, et al. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet. 2015; 8:95-107. doi: 10.2147/TACG.S51484. PMID: 25931827
  70. Ruijs, MW, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J. Med. Genet. 2010; 47(6):421-8. PMID: 20522432
  71. Pantaleo, MA, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur. J. Hum. Genet. 2014; 22(1):32-9. doi: 10.1038/ejhg.2013.80. PMID: 23612575
  72. Zöller, ME, et al. Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer. 1997; 79(11):2125-31. doi: 10.1002/(sici)1097-0142(19970601)79:11<2125::aid-cncr9>3.0.co;2-n. PMID: 9179058
  73. Senter, L, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008; 135(2):419-28. PMID: 18602922
  74. Bonadona, V, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011; 305(22):2304-10. doi: 10.1001/jama.2011.743. PMID: 21642682
  75. Pasini, B, et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet. 2008; 16(1):79-88. doi: 10.1038/sj.ejhg.5201904. PMID: 17667967
  76. Walker, L, et al. A prospective study of neurofibromatosis type 1 cancer incidence in the UK. Br. J. Cancer. 2006; 95(2):233-8. doi: 10.1038/sj.bjc.6603227. PMID: 16786042
  77. Wong, P, et al. Prevalence of early onset colorectal cancer in 397 patients with classic Li-Fraumeni syndrome. Gastroenterology. 2006; 130(1):73-9. doi: 10.1053/j.gastro.2005.10.014. PMID: 16401470
  78. Spirio, L, et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell. 1993; 75(5):951-7. doi: 10.1016/0092-8674(93)90538-2. PMID: 8252630
  79. Stratakis, CA, Carney, JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J. Intern. Med. 2009; 266(1):43-52. doi: 10.1111/j.1365-2796.2009.02110.x. PMID: 19522824
  80. Janeway, KA, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci. U.S.A. 2011; 108(1):314-8. doi: 10.1073/pnas.1009199108. PMID: 21173220
  81. Aarnio, M. Clinicopathological features and management of cancers in lynch syndrome. Patholog Res Int. 2012; 2012:350309. doi: 10.1155/2012/350309. PMID: 22619739
  82. Schneider, K, et al. Li-Fraumeni Syndrome. 1999 Jan 19. In: Pagon, RA, et al, editors. GeneReviews (Internet). University of Washington, Seattle. PMID: 20301488
  83. Hansford, S, et al. Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol. 2015; 1(1):23-32. doi: 10.1001/jamaoncol.2014.168. PMID: 26182300
  84. Kaurah, P, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007; 297(21):2360-72. doi: 10.1001/jama.297.21.2360. PMID: 17545690
  85. Martins, R, Bugalho, MJ. Paragangliomas/Pheochromocytomas: clinically oriented genetic testing. Int J Endocrinol. 2014; 2014:794187. doi: 10.1155/2014/794187. PMID: 24899893
  86. Pharoah, PD, et al. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001; 121(6):1348-53. doi: 10.1053/gast.2001.29611. PMID: 11729114
  87. Seminog, OO, Goldacre, MJ. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br. J. Cancer. 2013; 108(1):193-8. PMID: 23257896
  88. van, Lier, MG, et al. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am. J. Gastroenterol. 2010; 105(6):1258-64; author reply 1265. PMID: 20051941
  89. McGarrity, TJ, et al. Peutz-Jeghers Syndrome. 2001 Feb 23. In: Pagon, RA, et al, editors. GeneReviews (Internet). University of Washington, Seattle; Available from: http://www.ncbi.nlm.nih.gov/books/NBK1266/ PMID: 20301443
  90. van, der, Post, RS, et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J. Med. Genet. 2015; 52(6):361-74. doi: 10.1136/jmedgenet-2015-103094. PMID: 25979631
  91. Gorgel, A, et al. Coexistence of gastrointestinal stromal tumors (GISTs) and pheochromocytoma in three cases of neurofibromatosis type 1 (NF1) with a review of the literature. Intern. Med. 2014; 53(16):1783-9. doi: 10.2169/internalmedicine.53.2012. PMID: 25130111
  92. Majewski, IJ, et al. An α-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J. Pathol. 2013; 229(4):621-9. doi: 10.1002/path.4152. PMID: 23208944
  93. Miettinen, M, Lasota, J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) - a review. Int. J. Biochem. Cell Biol. 2014; 53:514-9. doi: 10.1016/j.biocel.2014.05.033. PMID: 24886695
  94. Kohlmann, W, Gruber, SB. Lynch Syndrome. 2004 Feb 05. In: Pagon, RA, et al, editors. GeneReviews (Internet). University of Washington, Seattle; Available from: http://www.ncbi.nlm.nih.gov/books/NBK1211/ PMID: 20301390
  95. Chow, E, Macrae, F. A review of juvenile polyposis syndrome. J. Gastroenterol. Hepatol. 2005; 20(11):1634-40. doi: 10.1111/j.1440-1746.2005.03865.x. PMID: 16246179
  96. Burnichon, N, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 2010; 19(15):3011-20. doi: 10.1093/hmg/ddq206. PMID: 20484225

Assay and technical information

Invitae is a College of American Pathologists (CAP)-accredited and Clinical Laboratory Improvement Amendments (CLIA)-certified clinical diagnostic laboratory performing full-gene sequencing and deletion/duplication analysis using next-generation sequencing technology (NGS).

Our sequence analysis covers clinically important regions of each gene, including coding exons and 10 to 20 base pairs of adjacent intronic sequence on either side of the coding exons in the transcript listed below. In addition, the analysis covers the select non-coding variants specifically defined in the table below. Any variants that fall outside these regions are not analyzed. Any limitations in the analysis of these genes will be listed on the report. Contact client services with any questions.

Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae’s deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. In very rare cases, (circulating hematolymphoid neoplasm, bone marrow transplant, recent blood transfusion) the analyzed DNA may not represent the patient's constitutional genome.

Gene Transcript reference Sequencing analysis Deletion/Duplication analysis
APC* NM_000038.5
BMPR1A* NM_004329.2
CDH1 NM_004360.3
CTNNA1 NM_001903.3
EPCAM* NM_002354.2
KIT NM_000222.2
MLH1* NM_000249.3
MSH2* NM_000251.2
MSH6 NM_000179.2
NF1 NM_000267.3
PDGFRA NM_006206.4
PMS2 NM_000535.5
SDHA* NM_004168.3
SDHB NM_003000.2
SDHC NM_003001.3
SDHD NM_003002.3
SMAD4 NM_005359.5
STK11 NM_000455.4
TP53* NM_000546.5

APC: The 1B promoter region is covered by both sequencing and deletion/duplication analysis. The 1A promoter region is covered by deletion/duplication analysis.
BMPR1A: Deletion/duplication analysis covers the promoter region.
EPCAM: Analysis is limited to deletion/duplication analysis.
MLH1: Deletion/duplication analysis covers the promoter region.
MSH2: Analysis includes the exon 1-7 inversion (Boland mutation).
SDHA: Deletion/duplication analysis is not offered for this gene. Sequencing analysis for exons 6-8, 14 includes only cds +/- 10 bp.
TP53: Deletion/duplication analysis covers the promoter region.