• Turnaround time:
    10–21 calendar days (14 days on average)
  • Preferred specimen:
    3mL whole blood in a purple-top EDTA tube (K2EDTA or K3EDTA)
  • Alternate specimens:
    Saliva, assisted saliva, buccal swab and gDNA
  • Sample requirements
  • Request a sample kit



NBSLD; RAD50-2; RAD502; hRad50

Associated disorders

The RAD50 gene is associated with autosomal dominant predisposition to breast cancer (PMID: 14684699, 16474176, 24894818) and autosomal recessive Nijmegen breakage syndrome-like disorder (NBSLD) (PMID: 19409520). Studies also suggest RAD50 may be associated with autosomal dominant predisposition to gynecologic cancers (PMID: 22006311, 14684699, 24549055). The data, however, are preliminary and insufficient to make a determination regarding this relationship.

Order single gene


Order this gene as a single gene test.

Order a test

Invitae tests that include this gene:

The RAD50 gene encodes for a nuclear protein that exhibits ATP binding and regulatory activity. RAD50 is a component of the MRN complex, which consists of the MRE11A, RAD50 and NBN proteins. The MRN complex plays important roles in DNA double-strand break repair, meiotic recombination, cell cycle checkpoint control, and telomere maintenance. Loss of RAD50 function due to mutation is expected to alter MRN function, and therefore contribute to the onset of disease (PMID: 10346816, 21035407).

RAD50 heterozygote
OMIM: 604040

Clinical condition
Women with one pathogenic RAD50 variant may have an increased risk of breast cancer, although exact risk figures have yet to be determined (PMID: 24894818, 16474176, 14684699). Data also suggest RAD50 may be associated with ovarian cancer; however, these data are limited (PMID: 25622547). An elevated risk for other cancers has been considered, but available evidence is insufficient to make a determination at this time (PMID: 22006311, 14684699, 24549055). While an individual with a RAD50 pathogenic variant will not necessarily develop cancer in her lifetime, her cancer risk may be increased when compared to the general population risk.

Gene information
The RAD50 gene is a component of the MRN complex, which is a protein complex consisting of the MRE11A, RAD50, and NBN genes. This complex plays a central role in double-strand break repair, DNA recombination, and maintenance of telomere integrity and meiosis (PMID: 19029686; UniProtKB – Q92878 RAD50_HUMAN; Accessed July 2016. If there is a pathogenic variant in this gene that prevents it from functioning normally, the risk of developing certain types of cancers is increased.

Individuals with one pathogenic variant in RAD50 have a 50% chance of passing that variant on to their offspring. It is now possible to identify relatives who can pursue testing for this specific familial variant. Many cases are inherited from a parent, but some cases occur spontaneously (i.e., an individual with a pathogenic variant has parents who do not have it).

The RAD50 gene is also associated with autosomal recessive Nijmegen breakage syndrome-like disorder (NBSLD). NBSLD is characterized by a clinical phenotype resembling Nijmegen breakage syndrome including chromosomal instability, radiosensitivity, neurodevelopmental disease, and immunodeficiency, but with a milder clinical presentation (PMID: 19409520).

At this time, there are no published guidelines or recommendations suggesting RAD50-specific medical management; however, due to the associated increased risk of breast cancer in women with a pathogenic RAD50 variant, enhanced or more frequent cancer screening may be warranted. An individual’s cancer risk and medical management are not determined by genetic test results alone. Overall cancer risk assessment incorporates additional factors, including personal medical history, family history, and any available genetic information that may result in a personalized plan for cancer prevention and surveillance.

Even though data regarding pathogenic RAD50 variants and the associated risk of breast cancer is limited, knowing if a pathogenic variant is present is advantageous. At-risk relatives can be identified, enabling pursuit of a diagnostic evaluation. Further, the available information regarding hereditary cancer susceptibility genes is constantly evolving and more clinically relevant data regarding RAD50 are likely to become available in the near future. Awareness of this cancer predisposition encourages patients and their providers to inform at-risk family members, to diligently follow standard screening protocols, and to be vigilant in maintaining close and regular contact with their local genetics clinic in anticipation of new information.


Review date: July 2016

Assay and technical information

Invitae is a College of American Pathologists (CAP)-accredited and Clinical Laboratory Improvement Amendments (CLIA)-certified clinical diagnostic laboratory performing full-gene sequencing and deletion/duplication analysis using next-generation sequencing technology (NGS).

Our sequence analysis covers clinically important regions of each gene, including coding exons and 10 to 20 base pairs of adjacent intronic sequence on either side of the coding exons in the transcript listed below, depending on the specific gene or test. In addition, the analysis covers select non-coding variants. Any variants that fall outside these regions are not analyzed. Any limitations in the analysis of these genes will be listed on the report. Contact client services with any questions.

Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae’s deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. In very rare cases, (circulating hematolymphoid neoplasm, bone marrow transplant, recent blood transfusion) the analyzed DNA may not represent the patient's constitutional genome.

Gene Transcript reference Sequencing analysis Deletion/Duplication analysis
RAD50 NM_005732.3